Classical and Constructive Logic Interactive Theorem Prover

The project is designed as an educational tool to help introduce students to the logic realm. A theorem
can be proved by clicking on formulas, the rule is directly applied according to the connective and a
theorem is proven once there is no more goals to check. We took an imperative approach using OOP to
implement the prover, instead of functional programming.

Implementation Functional vs. Imperative
There are three independent WY ARE YOU USING OBIECT
components to the prover. ?ﬁéﬁ:ﬁz;:& ﬁﬂo&mnﬁﬁe]

Types

We have two main types:

propositions defined by a state
(T/F) and a name and formulas
defined by a connective
(Or/And/Imply/Not) and sub
formulas, a list of formula Flexibility of types, namely objects in OOP; let us deal
objects with tricky concepts like sub formulas which can be
propositions.

Each object created is unique, making comparisons
Logic straightforward —we do not look at the name. Hence,
Collection of rules that take in a we face no problem in creating fresh variables.
sequent and returns the new Modularity offered by imperative programming gives
sequents after a rule is applied. more room to improve and debug each component.

It also contains axioms that

given a sequent returns true or Lack of efficient recursion makes it hard to implement
false if an axiom is found. Since inherently recursive rules like substitution.

the logic is independent, Error is more likely due to the lack of rigid type

adapting the prover to other checking

logics is simple. . ] .
OOP to introduce First-Order Logic

The following are changes made to types

Engine

Given a list of goals (sequents) to Formulas - _
prove, the englne.takes as input Props - -
from the user which formula to

"

| —
hiip://geekaficedaq.blogspot.com

break down and recursively
continues the process until no
more goals are left.

Quant are a new class defined by a quantifier (forall/exists)
and the variables applied to. Propositions are extended to
cover variables and functions. If the input, a list of
variables, is empty then the object is either a proposition

) or a variable; if isVar is true then it is a variable, else a
Samar Rahmouni proposition. The changes did not affect the other modules
Prof. Giselle Reis and the transition was seamless. The main challenge was
https://github.com/natvern/CCLITP implementing substitution without mapping.

Carnegie Mellon University Qatar




