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Centrality
A measure for how central each node in a graph is.
* Degree: number of neighbors
* Closeness: least average shortest path length
* Betweenness: occurs on how many shortest path
* Eigen-centrality: value in normalized principal
eigenvector

Eigen-centrality
* No direct geometric interpretation.

* Anode's importance is a function of the
importance of its neighbors.
* Used by Google to rank webpages.

Centralization
A measure for how centralized a graph is.
We use the following definition:
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Related Work

* The star graph is known to have the maximal
centralization score for all measures above.

* For bipartite graphs with fixed size parts, the
generalized star has maximal centralization for
degree, betweenness [ and closeness [21.

It is conjectured to have highest centralization for
eigen-centrality [3]

(2,4)-generalized star
(4,1,3,0)-star

(4,2)-generalized star
(2,1,1,1)-star

Empirical Results
* Generated all small bipartite graphs using nauty
* Computed eigen-centralization with networkx
* Result agree with conjecture

Analytical Results

Definition

(n,d,c,i)-star: a graph with n nodes attached to a
center, ¢ of them connected to 7, the rest connected
to d+i.

Theorem

The (n,d,c,0) has principal eigenvalue A and
eigenvector [¢, ¢g] corresponding to the two parts of
the graph given by
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Conjecture

The some of the squares of the entries

corresponding to each part of a bipartite graph in

the principal eigenvector are equal

Remark
For the graph of a tree, the following bound
holds
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